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Abstract
An analytical method is formulated to solve the Schrödinger equation for
a number of multilevel systems with dipole transitions between adjacent
and non-adjacent levels in multifrequency fields. It is shown that orthogonal
polynomials can be used to construct exact analytical solutions. The excitation
dynamics of the three non-equidistant levels system is analysed in detail.

PACS numbers: 42.50.Hz, 02.10.De, 02.30.−f, 03.65.−w, 45.20.Jj

1. Introduction

The excitation of multilevel systems in multifrequency electromagnetic fields is one of the
important problems of non-linear optics, spectroscopy and laser physics. Both numerical
methods and analytical methods for fields with various fixed modulation are used mostly
to solve multilevel systems excitation dynamics equations [1–8]. If the field is arbitrary
or has arbitrary modulation, the indicated problem is solved analytically for the harmonic
oscillator [4, 9] and special multilevel systems [10]. The use of various multifrequency
exciting radiations is a consequence of the necessity of multilevel quantum system dynamics
control. It is necessary to take into account the dipole transitions between non-adjecent
energy levels in the general consideration of the excitation dynamics of multilevel molecular
systems in multifrequency fields. Though such transitions have small probability, they play
a significant role in strong multifrequency laser fields when the multiphoton resonances take
place. The excitation of a molecule can require consideration of the resonant one-photon
transitions between both adjacent and non-adjacent levels in two laser fields with essentially
different frequencies.

In this paper an analytical method is defined to obtain the Schrödinger equation solutions
for multilevel systems with adjacent and non-adjacent dipole transitions. The application
of the orthogonal polynomials leads to multilevel models with different dependences of the
spectroscopy characteristics (dipole moments and frequency detunings of the transitions) on
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the energy. This analytical method is applied to a system of three non-equidistant levels. The
obtained exact analytical solutions describe the excitation in the molecular model systems with
both small and high probabilities of the non-adjacent transitions. Analysis of the analytical
solutions will show that radiations with a modulation arbitrariness allow for improved quantum
system excitation.

2. Analytical method of solving multilevel dynamics equations

Let us consider a molecular system with the Hamiltonian Ĥ 0 possessing a discrete spectrum
of eigenvalues En and eigenfunctions ψ0

n(t) = ϕ0
n exp (−i(En/h̄)t). Let the multifrequency

fields be switched on at the moment t = 0

E(t) = Eu u(t) cos(ωut) + Ev v(t) cos(ωvt)

max(u(t)) = max(v(t)) ≡ 1. (1)

The laser fields are the superposition of the two components with any slow modulation
functions u(t) and v(t). The spectrum of such radiation can have a band form. The arbitrarily
modulated radiation is multifrequency and non-bichromatic. In the special case of non-
modulated radiation the acting field is bichromatic [11–13].

The Schrödinger equation of the system has the following form:

i h̄
dψ(t)

dt
= (Ĥ 0 − µ̂ E(t)) ψ(t) (2)

where

ψ(t) =
∑
n

an(t)ϕ
0
n exp (−i(En/h̄)t) (3)

µ̂ is the operator of the dipole interaction. Equation (2) can be written in the energy
representation with the allowed transitions n → n± 1, n± 2:

−ih̄
dan
dt

= Eu u(t)
2

[µn−1,n exp(i(ωn,n−1 − ωu)t)an−1

+µn,n+1 exp(−i(ωn+1,n − ωu)t)an+1]
(4)

+
Evv(t)

2
[µn−2,n exp(i(ωn,n−2 − ωv)t)an−2

+µn,n+2 exp(−i(ωn+2,n − ωv)t) an+2]

an(t = 0) = δm,n.

This equation was obtained in the rotating wave approximation with allowance made for the
inequalities

|ωn+1,n − ωu| � ωu |ωn+2,n − ωv| � ωv (5)

superimposed on the laser fields (1). The non-equidistant character of the energy spectrum of
a multilevel molecular system was taken in accordance with the conditions

|ωn+2,n+1 − ωn+1,n| � ωn+1,n ωn+1,n = (En+1 − En)/h̄. (6)

Equations (4) can be solved analytically for a number of special cases. In the case of
monochromatic excitation of multilevel systems, the application of orthogonal polynomials
allows models with miscellaneous spectroscopic characteristics [14] to be investigated
analytically. In this paper exact solutions for the multilevel systems excited by the
multifrequency fields (1) with two imposed requirements are discussed. These requirements
are:
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(1) the multiplicity of the carrier frequencies

ωv = 2ωu (7)

(2) the absence of modulation of the field component with frequency ωv

v(t) ≡ 1. (8)

RWA approximation (5) leads to multilevel models with insignificant non-equidistance of
the energy spectrum. Such models can be applied to describe the multiphoton excitation
of molecular systems. The multiphoton molecular transitions between lower levels and in
energy quasi-continuum are quasi-resonant. In accordance with the requirement (7), non-
adjacent dipole transitions are successive adjacent dipole transitions. If the one-dimensional
multiplication operator r x (r is a constant) corresponds to adjacent dipole transitions then
the operator (r x)2 as a result of the successive application r x leads to double successive
adjacent dipole transitions. Further, orthogonal polynomials of one argument will be used as
one-dimensional analogues of stationary Schrödinger equation wavefunctions. Operators and
orthogonal polynomials, which will be used in this paper to solve the problem (4), do not
allow the restriction (8) to be avoided. In the general case v(t) �≡ const, a model Hamiltonian
including the interaction operator V (x, t) = u(t)rx + v(t)(rx)2 has diagonal matrix elements
which depend on time. Dynamic equations with such a generalized Hamiltonian cannot be
reduced to the problem (4), and are not considered here.

Let us construct an analytical method to solve equations (4) using the orthogonal
polynomials with the continuous variable x. Polynomials pn(x) are orthogonal on a symmetric
interval (−A, A) with respect to an even weight function w(x)∫ A

−A

pm(x)

dm

pn(x)

dn
w(x) dx = δm,n d

2
n (9)

where dn is the norm. They obey the recurrence formula

r x
pn(x)

dn
= fn

pn−1(x)

dn−1
+ f ∗

n+1
pn+1(x)

dn+1
r = k1

k0

d0

d1
fn = r

kn−1

kn

dn

dn−1
(10)

in the general self-adjoint form (this form is known [14, 15] in the real symmetric case) as the
Hamiltonian of equations (4). Here kn is a leading coefficient of the polynomial pn(x). The
five-term recurrence relation for the real polynomials(
Evµ0,2

(r x)2

f2
+ Euµ0,1 u(t) r x + Evµ0,2 sn

)
pn(x)

dn

= Euµ0,1 u(t)

(
fn
pn−1(x)

dn−1
+ fn+1

pn+1(x)

dn+1

)

+ Evµ0,2

(
Fn−1

pn−2(x)

dn−2
+ Fn+1

pn+2(x)

dn+2

)
(11)

is obtained with the help of the trinomial equality (10). The coefficients Fn and sn are
defined by

Fn = fn fn+1/f2 sn = −(f 2
n + f 2

n+1

)/
f2. (12)

Comparing the equations (11) and (4), it is possible to obtain the solution of equations (4) for
a particular case. Let the non-equidistant system of the energy levels be described as

En = E0 + nh̄ωu + (Evµ0,2) (sn − s0) (13)

with matrix elements

µn−1,n = µ0,1fn µn−2,n = µ0,2Fn−1. (14)
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Then for the dipole transitions n → n± 1, n± 2 with frequencies

ωn,n−1 = (Evµ0,2/h̄) (sn − sn−1) + ωu
(15)

ωn,n−2 = (Evµ0,2/h̄) (sn − sn−2) + 2ωu

in laser fields (1), (7) and (8), one obtains the solution in the following form:

an(t) =
∫ A

−A
exp

[
i t
Evµ0,2

h̄

(
(r x)2

2f2
+ sn

)

+ i r x
Euµ0,1

2h̄

∫ t

0
u(τ) dτ

]
pm(x)

dm

pn(x)

dn
w(x) dx. (16)

This solution has been found in [16, 17]1 for the particular case Eu ≡ 0.
Let us construct one more modification of the analytical method to solve equations (4)

using the orthogonal polynomialspn(xk)with the discrete variable xk, k = 0, 1, . . . , (N−1).
It is proved [18] that those polynomials pn(x) with the continuous variable, which satisfy the
orthogonality relation (9), have one more orthogonality relation

N−1∑
k=0

σ(xk)
pm(xk)

dm

pn(xk)

dn
= δm,n m < N n < N (17)

σ(x) = AN−1 d
2
N−1

(
pN−1(x)

dpN(x)

dx

)−1

pN(xk) = 0. (18)

Here An = kn/kn+1 is the ratio of the leading coefficients of the polynomials pn(x) and
pn+1(x). The polynomials pn(xk) with the discrete variable obey the recurrence relation (10)
with the same coefficients r and fn as those for the polynomials pn(x) with the continuous
argument, except for the value

fN = 0. (19)

As the polynomials pn(xk) obey the relation (11), it is possible to obtain the solution of
equations (4)

an(t) =
N−1∑
k=0

exp

[
i t

Evµ0,2

h̄

(
(r xk)

2

2f2
+ sn

)
+ i r xk

Eu µ0,1

2h̄

∫ t

0
u(τ) dτ

]

× pm(xk)

dm

pn(xk)

dn
σ (xk) (20)

for a particular case with the help of the orthogonality relation (17). This solution describes
the excitation of the non-equidistant system of N levels (13). The transition characteristics
µn−1,n, µn−2,n and ωn,n−1 are defined by the formulae (12), (14) and (15) with the equality
(19) taken into account. The fields acting on the system are given by expressions (1), (7) and
(8). The solution (20) can also be obtained with the help of known polynomials with discrete
variable which obey the recurrence formula (10) and the orthogonality relation in the form
(17). The formula (18) for the weight functionσ(xk) is not necessary if the polynomialspn(xk)
are known beforehand and polynomials pn(x) are not orthogonal on the known continuous
interval. The zero matrix elements

µN−1,N = 0 µN−2,N = 0 µN−1,N+1 = 0 (21)

occur in the recurrence equation (4) in accordance with equations (12), (14) and (19). Thus
the analytical method, using the orthogonal polynomials with discrete variable, allows one to
describe the dynamics of N-level systems.
1 There is online access to the Latex source [16] in the Internet.
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3. The analytical description for a three-level system

The constructed analytical method can be used to describe the excitation of the system which
consists of three non-equidistant levels. The dynamics equations for the three-level quantum
system in the monochromatic field have an analytical solution. In the multifrequency laser
fields, the dynamics equations for the three-level model can be solved analytically only for a
special spectrum of the excitation radiation. Further, exact analytical solutions are obtained
for the three-level systems with adjacent and non-adjacent transitions in the multifrequency
fields.

The dynamics of the quantum three-level model with any transitions is described by the
system of three equations

−ih̄
da0

dt
= Eu u(t)

2
µ0,1 exp(−i(ω1,0 − ωu)t)a1 +

Ev
2
µ0,2 exp(−i(ω2,0 − ωv)t)a2

−ih̄
da1

dt
= Eu u(t)

2
[µ0,1 exp(i(ω1,0 − ωu)t)a0 + µ1,2 exp(−i(ω2,1 − ωu)t)a2] (22)

−ih̄
da2

dt
= Eu u(t)

2
µ1,2 exp(i(ω2,1 − ωu)t)a1 +

Ev
2
µ0,2 exp(i(ω2,0 − ωv)t)a0

where the initial condition is an(t = 0) = δm, n. The system is characterized by the arbitrary
dipole moments µ0,1, µ1,2, µ0,2 and the transition frequencies ω1,0, ω2,1.

Let us construct an analytical solution for the three-level model (22). The Gegenbauer
polynomials

pn(z) = Cλn(z) ≡ (2λ)n
n!

2F1

(
−n, n + 2λ; λ +

1

2
; 1 − z

2

)
λ < −2 or λ > − 1

2 (23)

with the discrete variable xk, the index k = 0, 1, 2, is used for this purpose. Application of
the Luke theorem [18] allows one to establish the orthogonality of the polynomials (23) on
the discrete range of the argument

xk = −B, 0, B k = 0, 1, 2 B = (2(2 + λ)/3)−1/2 (24)

with respect to the weight function

σ(xk) = 6
√
π )

(
λ + 3

2

)
(λ + 2) ) (λ + 3)

{(
[λ + 1] x2

k − 2
) (

[λ + 2] x2
k − 2

)}−1
(25)

and the norm

dn = 2−λ)(1 − λ) {|λ− n|n! )(1 − 2λ− n)}−1/2 at λ < −2
(26)

dn =
{√

π (2λ)n )
(
λ + 1

2

)
(λ + n)n! )(λ)

}1/2

at λ > −1

2
.

The polynomials Cλn(xk) satisfy the recurrence formulae (10) and (11) with the coefficients

r =
{

i
√

2|λ + 1| λ < −2√
2|λ + 1| λ > − 1

2

λ = 2 [f2]2 − 1

2 − [f2]2

f0 = 0 f1 = 1 f2 = µ1,2

µ0,1
f3 = 0 (27)

and Fn, sn are defined by (12). The explicit form of the solution (20) for equations (22) is
found with the help of the substitutions of the formulae (12), (23)–(27). This solution is right
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for the particular case of equations (22) describing the excitation of the three non-equidistant
energy levels

E0 E1 = E0 + h̄ωu − Evµ0,2 µ1,2

µ0,1
(28)

E2 = E0 + 2 h̄ ωu + Evµ0,2

(
µ2

0,1 − µ2
1,2

µ0,1 µ1,2

)

in the fields (1), (7) and (8). Dipole moments µ0,1, µ1,2 andµ0,2 are arbitrary. The transition
frequencies are

ω1,0 = ωu − Evµ0,2µ1,2

h̄µ0,1
ω2,1 = ωu +

Evµ0,2µ0,1

h̄µ1,2
. (29)

The formulae (28) and (29) are obtained from the expressions (12) and (27). If the field
amplitude Ev is not large for any values of the dipole moments µ0,1 and µ1,2, the RWA
inequalities (5) and the conditions (6) are valid.

Let the zero level (m = 0) be only populated at initial time (t = 0). The problem of the
maximal excitation of the top level (n = 2) will be investigated. The top-level population
according to formulae (20) and (24) can be written as

ρ2 = |γ0 + exp(iαBt + iβBT )γB + exp(iα−B t + iβ−BT )γ−B |2 (30)

where the constants are given as

γxk = Cλ0 (xk)

d0

Cλ2 (xk)

d2
σ(xk) αxk = Evµ0,2

2 h̄

(r xk)
2

f2
βxk = rxk

Euµ0,1

2 h̄
(31)

and

T =
∫ t

0
u(τ) dτ. (32)

Since the constants αx and βx are real numbers, and values t and T are arbitrary real numbers,
the formula (30) determines a maximal possible population of the top level

ρmax
2 =

∣∣∣∣∣
2∑
k=0

|γxk |
∣∣∣∣∣
2

� 1. (33)

The dependence ρmax
2 on the ratio f2 = µ1,2/µ0,1 of the dipole moments is shown in

table 1. The constants ρmax
2 for inverse values f2 = µ1,2/µ0,1, µ0,1/µ1,2 coincide.

Table 1. Maximal population of the top level ρmax
2 at ρ0(t = 0) = 1.

µ1,2/µ0,1 µ0,1/µ1,2 ρmax
2 (µ1,2/µ0,1) = ρmax

2 (µ0,1/µ1,2)

1 1 1
0.9 1.111(1) 0.988 981
0.8 1.25 0.951 814
0.7 1.428 57 0.882 843
0.6 1.666 (6) 0.778 547
0.5 2 0.64
0.4 2.5 0.475 624
0.1 10 0.039 212
0.01 100 0.000 399 92
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If the maximal population of the top level takes place, the function T = T(t) (20) and a
time value t should satisfy the following system of linear equations:

αBt + βBT = −arg (γB/γ0) + 2πk
(34)

α−Bt + β−BT = −arg (γ−B/γ0) + 2πl.

The numbers k and l are integer and arbitrary. The infinite set of functions u(τ ) in equation (32)
and the miscellaneous values of the time t satisfy the system (34). It is the principal physical
conclusion, defining further investigations, that the exact analytical selecting technique of any
arbitrary form of the radiation modulation allows the best upper level excitation in accordance
with the formulae (30), (32) and (34). However, table 1 is not the key result. It shows
an extreme possible excitation and the restriction of the generally used dipole interaction
approximation.

Thus, using a multifrequency excitation allows one to control the dynamics of the
populations more effectively and also to reach the maximal population inversion in the system
when both adjacent and non-adjacent transitions are taken into account.

4. Conclusions

The Schrödinger equation is solved analytically for a number of multilevel systems in the
rotating wave approximation taking into account adjacent and non-adjacent transitions. The
analytical method of obtaining the solutions for the investigation of the multilevel system
dynamics in multifrequency fields is defined owing to the application of the orthogonal
polynomials with continuous or discrete variables. The Schrödinger equation has been solved
analytically for the three-level model within this approach. The energy spectrum of the system
depends on the values of the dipole moments. The maximal inversion of the population at the
transition 0 ↔ 2 in the three-level system is reached when the ratio µ1,2/µ0,1 of the dipole
moments of the adjacent transitions is equal to 1. The analytical expressions (1), (7), (8), (32)
and (34) are obtained for the optimal forms of those multifrequency fields which effectively
excite the system.
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